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1 Introduction

Many problems arising in the aircraft, launch vehicle and missile aerodynam-
ics require the numerical solution of Euler Equations of Gas Dynamics and
constructing numerical schemes for solving these equations has been one of
the principal subjects of research among the CFD community for the last
decade. The Euler Equations are nonlinear vector conservation equations
and further are hyperbolic in nature. It has been found very essential from
the point of view of accuracy and robustness to design numerical schemes
which are conservative and upwind, that is, which respect hyperbolicity. Be-

fore the advent of the Boltzmann schemes upwinding has been enforced either -

via flux-vector splitting 1] or via flux difference splitting [2]. The third line
of approach employed in constructing the upwind schemes is based on what
the author [3] calls the moment method strategy which is based on the fact
that the Euler Equations are suitable moments of the Boltzmann equation
of Kinetic Theory of Gases. Several other workers have also exploited this
connection between the Boltzmann equation and the Euler Equations for
constructing the Boltzmann schemes [4,5,6,7,8]. The principal subject mat-
ter of the present paper is to survey several Boltzmann schemes developed by

'Keynote lecture delivered at the 5'* Asian Congress of Fluid Mechanics, 10-14
August, 1992, Taejon, Korea
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the author and his coworkers and point out some promising future directions
of research into the rapidly growing area of Boltzmann {or Kinetic) schemes.

2 Basic Theory of Boltzmann Schemes

Let us illustrate the basic idea with reference to 1-D unsteady Euler Equa-

tions . '
ot/ oG
at Oz
where U is the vector of conserved varibles, G is the flux-vector and are given

by

=0 (1)
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Here p = mass density, u = flud velocity, p = pressure, e = total energy per
unit mass = —2— 4 142 The equation (1) can be otained as ¥-moment of

(v—=1) 2
the 1-D collis;i’onless Boltzmann equation
aF JF
- — =0 4
ot * e (4

where F is the Maxwellian velocity distribution given by

I
F=ty\[Ceap[-80-w- 1 (

I
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b= M%T, R = Gas constant per unit mass, v = molecular velocity, | = internal
energy variable corresponding to nontranslational degrees of freedom, and

3 —7

Ip= —»"—
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The moment function vector is defined by
N T
¥ = [1 v, I + } (7)

The Euler Equations (1) can then be cast in the compact form

oF oF
(‘I’ a + U—éz-) = 0

where the (¥, f) is defined by
(0, f) = /()”d//_idef(v) (9)

2.1 KTFLIC Method

The equation (7) is the basis of many Kinetic schemes. One of the earliest
schemes called Kinetic-Fluid-In-Cell (KTFLIC) method due to Deshpande
and Raul [9] exploits the above connection the Euler Equations and the
Boltzmann equation. To obtain the state update formulae for the KTFLIC
let us consider 1-D interval a < z < b which is assumed to be divided into
cells. If a particle moves from z € C; to £’ € C, during time interval At,

then this particle will have molecular velocity v = I; . Hence the mass,
momentum and energy transfer from cell C; to C; during At are given by

_ JF(z,7')
Ma(C,-—»Cj)_/C'dz/cjdzT (10)
F(z,z')
Mo(Ci - C)) /dz/ do't = (11)
' —1)*] F(z,2) _
0 (Ci = Cy) /d.r/ dz’ [1o+ 3 } = (12)

where




At the end of the transport of mass, momentum and cnergy from all cells (7,
to the cell (7, we have

Ma(C;) = waa(a — (), Mo(C Z Mo (C; — ().
all 1 all 1
En{(C ZEn (C, = () (1)
all ¢

which are the state update formulae for the KTFLIC method. Deshpande
and Raul [9] have used KTFLIC method for the 1-D shock propagation prob-
lem and the results are shown in Fig.l. A large number of mesh points (500)
were required for crisp shock. The KTFLIC method is explicit, uncondition-
ally stable, and first order accurate in space and time. It is a forerunner of
Morton’s Characteristic Galerkin Approach [10]. The method involves double
integrals and these have to be computed numerically and hence the method
is computationally very expensive. Also. extension to multidimensions in-
volves some problems in dealing with boundary conditions and keeping track
of several possibilities as a particle moves from any cell to any other cell.

2.2 Kinetic Numerical Method (KNM)
A faster version of KTFLIC is the Kinetic Numerical Method (KNM) which

has the simple state update formulae
UMt = (V. F™ (z; —vAt.v, 1)) (13)

where f™ (&,,v,[) is the local Maxwellian at the grid point r, and time
level n. Reitz [5] was the first one who developed this KNM and applied it
to 1-D shock problem. Deshpande [11] has shown that the KNM satisfies
the entropy condition, upwinding property and has TVD (Total Variation
Dimimishing) property. For the purpose of proving the satisfaction of the
entropy condition, Deshpande [3] has used slightly modified H-function and
flux-function H,

H= //(anp 5 37)F1n/3)dvd1

3y i
H, _// (anF+2( )FlnB) dvdI (16)
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Developing higher order accurate versions of KNM 1s not a straightforward
job. Difliculty arises due to the fact that the governing equations are (8)
and not (1), hence it is not possible to construct higher order schemes for
equation (3) by taking moments of higher order schemes of equation (4). We

emphasize that 9—;;: + vg—f # 0, in fact

or f)i_ op dp\ OF Qli+,% 8_F+ @_{_ @ aF 17)
or s T ot Yoz ou \at T Voz 0_.6({

'(,)—t.+ v(?.l‘

dp

The right hand side of equation (16) is very characteristic of the Chapman-
Enskog theory. Replacing the time derivatives of p,u, in terms of space
derivatives using the Euler Equations we get

oF aF

E—_*-UG_I_PCEF (18)

where Frp; is the Chapman-Enskog polynomial and is given by

Ju as
PCE—a—IP,+a—:C—Pq (19)
3y -3 (v-u)? d(y=17% I
= — ) _ 9

Pr=—5—+08-7 557 35—~ 2RT (20)

P —5 4{(v-1) 3
q—aRT(v—u)—ﬁ/(v—u)-—(v—u) (21)

The Chapman-Enskog polynomial has the interesting property
(¥, PcgF)=10 (22)

We are now ready to construct the second order accurate KNM of Deshpande
[11,12]. Start with

oF™ At? O*FT
/'TL+| = 71+1 = n —_— _—
{ (\I/,F ) (W, F™) + At (\Il, Y >+ 5 (\Il, 50 )+

<

Using the equation (17) we obtain

Fn . 2 1n
(7 = (@, F) — At (w,vaar ) + At (‘I', aaf; ) + . (23)

Ut



. - . . g
where we have used equations (18) and (22). For the second derivative %

we have

I*F a (oF N J o
- = —-p— | — —_
o~ “axr\ar) Tt
SO F J : J
= 4 772 —(E;(P(_-EF)-F(,)—t(P("EF)
Substituting in (23) and after some rearrangement we get
At )
[+ = (W, P (1 — v\ — Vv PepF ) + 0 (A2) (24)
2 or

which shows that in addition to £ (z — vAt) terimn we have one more term
containing the Chapman-Enskog polynomial. Heunce the Maxwellian distri-
bution alone will not yield a second order accurate KNM. Defining

At
fee=F (1 + —,)‘PC'E> . (25)
the equation (24) can also be recast as
U = (U, fop (2 - vAL) + 0 (AF) (26)

When equation (25) is compared with the usual Chapman-Enskog distribu-

3
fee=F (1 - Ip - q\/_/)q)
p p

we obscrve that the distribution (235) is antidiffusive showing that such an-
tidiffusive terms are necessary to achieve second order accuracy. Fig.2 shows
the density and velocity plots for 1-D shock propagation problem solved by
using the state update formula (26). Slope limiters [3] have been used to
suppress wiggles. [t is observed that the KNM vields accurate results with
high resolution. ‘

tion

3 The Kinetic Flux Vector Splitting (KFVS) Scheme

The KNM involves only one numerical integration with respect to space
variable and is therefore faster than KTFLIC method. It is tempting to en-

hance the speed further by modifying KNM, and this can be accomplished



by reducing its support. This brings us to the Kinetic Flux Vector Split-
ting (KFVS) scheme of Deshpande [11] and Mandal and Deshpande [12].
The KIFVS method is obtained by sphitting the Maxwellian into two parts
corresponding to v > 0 and » < 0. The flux-vector (i therefore splits as

) " ’.-_}.
(r'+ = (W, : -:ILIF> (m(l (r'_ = (‘U—)’I——f’) (.27)

The sphit {lux-vectors G and 7 are integrals of » ¥ over positive and

negative hall spaces in velocity v They can be evaluated in closed form in
terms of ervor functions as

pudt £ pB
Gt = (p + pu®) A* £ puB (2%)
(pu + pue) AT £ (g + pe) 3

where

‘i_l:{:erfs 5= e~
S 2 T T 2 /73

In terms of the split fluxes the Euler Equations become

and s = speed ratio = u\/g

S)(_ N oGT N a6~ _0 (29
ot Jdr or =)

Upwind differencing the split-flux terms in equation (29) we obtain the first
ovder KEFVS scheme
. - rn V- TL +n 1—n -1
U\, G =Gy G =G
ot ; Az Ar

=0 (301

Substituting for U, G* and G~ in terms of F we get
9 n
5 (v F7)

I v vl n 1 v—={ri o, n
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. . . ' . e .
which is obvionsly the Y-moment of the CIR differenced Boltzmanu equation

Qi " . v+ Jo| £ = FJ"_l N e — || /')"+1 —~ F7 -0 (31)
! , 2 Ar 2 AT

Now an interesting question arises whether the KFVS scheme (30) which is
obtained from {31) remains an upwind scheme after moments are taken. In
order to demonstrate that the scheme (30) obtained by differencing (29) is
an upwind scheme it is necessary to transform equation (29) to a symmet-
ric hyperbolic form. Deshpande [13] has shown that eqnation (29) can be

transformed to

dq dq dq
—+ BT —+B —=0 32
T P L)
where ¢ is the transformed vector given by
n3 T

q=|lnp+ —— — But.28u, -23
v —1

P=positive symmetric matrix, and B*, B~ are positive and negative sym-
metric matrices respectively. It then follows that P~'B* and P~'B~ have
real positive and real negative eigenvalues respectively, thus justifying the
backward dilferencing of B+g§ and forward differencing of Bﬂ%. It has
been found that the eigenvalues of P~'B* and P~'B~ are smooth functions
of the Mach munber [12].

Mandal and Deshpande [12] have shown that the above KFVS scheme
can be made higher order accurate by following the analysis of Chakravarthy
and Osher [14]. For this purpose we write the KFVS in the form

U, Gy = 0 (33)
ot Az B -

J

The first order KEVS given by (30) is obtained by choosing

B G'J. + G')-H DG—+;_ - I)(-IJ___;_

. J .
("H-% = 5 + 5 (34)
where the llux differences DGj;,_ are defined by
C+ e GE ., - G*
[)("il— - (lll, d .)|1| (Fipy ~ F))) - <_J“;_Jl (33

oo



The equations (33) and (34) express the KFVS scheme in a flux-difference
sphitting format implying that the KFVS scheme can also be looked upon as
a flux-difference splitting scheme. Higher order schemes can now be obtained
by modifving the formulae for G']+;_ as

G..r=FEFS

7+

[NTE

1 | N 3 __ " ) ,
o [(1 +8) (DGH;_ _ DGH%) (1= o) (/)(.] _ DG].+%>] (36)

3
where EFS is the right hand side of the equation (34) representing the ex-
pressions lor the first order scheme. The parameter ¢ takes on respectively
the values -1 and :’-3 for the second and third order upwind schemes. [n order
to suppress the spurious wiggles in the solution it is necessary to introduce
the modified differences

DG’;i = minmod | D R x D(i ] (37)

1
2

DGE | = minmod d |DG%, . Rx DG* | (38)
J+§'

J+' 5
where 7 is a limiter with 0 < <R <32,

sgn (a) + sgn (b)
2

<

squ{a)=+1ifa>0, —1ifa<0, 0.0if a=0.0 (40)

With this modified differences the formula (36) becomes

man {|al, |6]] (39)

minmod [a, b] =

Gy = EFS

| - pe b <
, "+ - "4 -
+[n+o (D61, - DGs,, ) v -0 (D61, - D65, )| e
Fig.3 shows the computed density and fluid velocity profiles using the first
order, sccond order and third order KFVS schemes for which Gj+§ given

by equations (34) and (41) are used. The accuracy of the results and the
crispness ol the shock are evident.



4 KFVS Applied to Multidimensional Flows

After having proven the capability of the KFVS method for a |-D test case it
is necessary Lo [ind out how it performs on 2-D and 3-D flows for low subsonic
to hypersonic Mach numbers. Mandal [15] has applied the high resolution
finite volume KEVS method to the standard test cases of shock reflection and
bump in a channel problems. Figures 4 to 9 show the pressure contours and
residue history for these problems. Mathur et al. [16] have applied the first
order as well as high resolution KFVS schemes to a variety of 2-D problems
with structured and unstructured meshes. They have used cell centered finite
volume KIFVS method. In order to use the high resolution KFVS method
(which 1s a must in transonic regime) on a triangular mesh it is necessary
to obtain the fluxes on the edges of a cell using extrapolation. Consider for
example, a cell centre P of a triangular cell whose edges are shown hatched
in the sketch below :

The problem is to find out the flux on the edge AB in conformity with
the upwinding principle. Let n be the outward normal to AB and t tangent
to the edge. Then applying the usual upwinding criterion we get

Gap = G* (Uny,un) + G~ (Un2, Up2) (42)

Here we have suppressed the dependence of G* and G~ on density and
temperature. In obtaining G4p as above we have used only the data at cell
centres | and 2. [n order to obtain high resolution KFVS it is necessary to

10



usce the data at other neighbouring cell centres. Mathur et al. [16] consider
the cell centres 13.14.15 and 3 and select that cell centre of this set which is
closest Lo the straight line joining the centres | and 2. Assuming that this
centre is 15, the flux (7 5 is then obtained by extrapolation based on 7 and
GTs- By using the same criterion Ghg can also be obtained. Obviously to
suppress Lhe wiggles minmod operators as explained before need to be used.
Figures 10 and 11 show typical results obtained by Mathur et al. for the
fow past an airfoil and flow through a ramp in a channel. They have made
extensive comparisons between the results obtained by KEVS and Jameson's
methods and concluded that KFVS method performs as well as Jameson's
method and some times better.

Recently Deshpande et al. [17] have developed a 3-D time marching Euler
code (calledd BHEEMA) using the KFVS method for computing high speed
flows aronnd hypersonic reentry configuration consisting of cone-cylinder-
Aares and control surfaces. This code uses finite volume method and operates
on a hexahedral mesh generated by using the stacked grids. Figures 12 and 13
show the pressure contours for axisymmetric configuration at M = 4 and a =
2°, and plot of pressure coefficient for the reentry configuration with wings at
M = 1° and o = 0°. Based on an elaborate comparison of the aerodynamic
coefficients (74, C'n, Cas etc.) obtained from BHEEMA with the wind tunnel
results they conclude that the time marching 3-D Euler code BHEEMA is
a reliable design tool for predicting aerodynamic coefficients within 15%.
Recently Dass and Deshpande [18] have successfully used the convergence
acceleration devicee GMRES in combination with KIFVS for obtaining faster
C()“V('l'g('ll('('.

As a last example of the application of KFVS mention may be made of
the work of Teerthamalai and Deshpande [19] who computed hypersonic re-
acting {low over a hemisphere using KFVS method and equilibrium chemistry
mocdlel. or this purpose they considered 5 species (O, N, NO, O, N;) and 3
reactions model

Ri:0,+M=20+M,
R, . Ny+ M =2N+ M,
Ry : No+ 0O, =2NO.

For a specified 4 the Euler Equations were solved by BHEEMA for computing
density, fluid velocity and temperature evervwhere in the flow field. Then



the chemistry module was used compute mass fractions, temperature and
v evervwhere in the flow field. The results of the computations reveal that
the drag coefficient for Mach 10.15.20 was within 2% of that obtained by
using the nonrcacting perfect gas model. However, the temperature differs
substantially. Fignres 14 and 15 show the temperature and pressure contours
for M. = 10.20. |

It is therelore reasonable to conclude that the KFVS method has travelled
a long way since its modest beginning in 1982 and is now a fully tested and
validated Ninetic upwind method capable of computing inviscid compressible
flows past any configuration.

5 Promising Future Directions

Search s continuously on for the elusive best method for obtaining numerical
solntion of the Euler Equations. The two guiding principles for developing
new methods demand that the method be less dissipative compared to the
existing ones and further that i1t should mimic the physics of the flow as much
as possible. The development of upwind schemes is a consequence of following
the second principle. We discuss briefly here four new ideas for developing
upwind schemes exploiting the connection between the Boltzmann equation
and the Buler Equations.

5.1 Use of Exponential Switch

Considering 1-D problem again for the sake of demonstrating the idea we
observe that KFVS is equivalent to assuming that the flux at the boundary
B ol a cell (see the sketch below) 1s given by

LEFT RIGHT
STATE STATE "

-
[ Q)



FrR+ FL  Fr—F
fo = o = s (1) (43)

Here [ and Fp are the Maxwellians corresponding to the right and left
states respectively and sgn(v) 1s the nsual sign function. We now replace the
sign Munction by the exponential function giving

0 Fr—F JAY;
./_H:/I{‘FFL_ R LCI[)(-—-O(lI )for v >0

2 2 Ar

S

o = [‘R+FL+ FR_FLe;tp (_a|v Af) forv <0 (44)
2 Ar

where o is a nonnegative real number. When the controlling parameter «
15 zero we get the standard KFVS scheme and when a is infinity we obtain
the central difference scheme which has zero diffusion. Thus by. continuously
varying o we can control the numerical diffusion in the scheme. Raghurama
Rao and Deshpande [20] have applied the above sclieme to 1-D shock tube
problem.  The results are shown in Fig.16 from which it is obvious that
the above modification does reduce the diffusion in the scheme. Further
investigation is essential to develop the idea even more.

5.2 Kinetic Splitting Based on Thermal Velocity

One of the eriticisms that may be raised against the KFVS is that the method
assumes the existence of the rest frame as the splitting of the flux requires
the division of velocity space into two halves v > 0 and v < 0. As the
rest fraine is physically meaningless 1t may be a good idea to do the splitting
without assuming the existence of a rest frame. One possibility is to do the
splitting hased on the thermal (or what is also called as peculiar) velocity.
The thermal velocity ¢ appears in the formulae for pressure, temperature
and stress tensor of the Kinetic Theory of Gases, and is thus physically more
meaninglul than the variable ©. The motion of a molecule can be thought
of as consisting of a random movement with velocity ¢ superimposed on
an orderly motion with velocity u. The random variable ¢ is a Gaussianly
distributed variable if we are dealing with inviscid gas dynamics. It may
therefore be rewarding 1if a nunierical scheme i1s constructed exploiting the
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above wleas. TFor the present we do splitting based on ¢. Towards this end
we write Lhe collisionless Boltzmann equation in the form

OF  OF OF _

—— tu—+c—=90 453
ot " Yoz " “or (45)
Taking the moments we obtain
au 4 oG" N oG* (16)
ot Jr dr
where
pu 0
(=¥, FY=| pu* | and G* =(c¥,F)=| p (47)
eu . pu
The cigenvalues of the flux Jacobian %% are all uu,u showing.that %—C;" cor-

responds to the transport of fluid with velocity u. The eigenvalues of %(z:

on the other hand are 0, ta\/(y — 1) /v where a is the local sonic velocity.
The dynamics of the fluid can therefore be considered as being influenced
partly by the particle motion (movement with velocity u) and partly by
the wave motion (random movement or movement of waves with velocity 0,

+a\/(y — ) /+. Balakrishnan and Deshpande [21] were the first ones who

experimented with numerical schemes exploiting the wave-particle behaviour
of fluid motion. Here we are attacking the problem from a different angle.
namely, Lhe construction of the Boltzmann scheme by treating the u and ¢
terms dillcrently. Following Raghurama Rao and Deshpande [20] we split G°
into (** and (G~ defined by ' '

Gt = (w, et ‘C'F) and G*~ = (w, c ;‘C|F> (43)
which can be simplified as
P
:t2;;1r,6
1a 4 £y
T * = 2 = 2¢/n3 (49)
2t (g + pe)

]
e %
)



Raghurama Rao and Deshpande [20] have solved the 1-D shock tube problem
and 2-1) shock reflection problem using the above upwind method (which they
term as Ninetie Acoustic Flux Vector Splitting - KAI'VS scheme). Figures 17
and 1§ show the results obtained. Even though the [-D results do not show
significant reduction in the dissipation, the 2-D computations using KAFVS
show mmnel less sinearing of the shock than the KFVS method. Further,
KAFVS s fonnd to be much less expensive compared to the KFVS method.
The basic idea of treating uf, and cf, terms in a different fashion seems
quite sonnd and definitely needs much more study and testing on a variety
of multidimensional problems.

5.3 Multidirectional Boltzmann Schemes

Many munluidimensional upwind schemes advance the solution through a se-
quence of one-dimensional operators. The underlying physical model there-
fore involves wave propagation only along coordinate directions while the
physical sitnation is that the waves propagate along all possible directions.
Powecll and Van Leer [22] have observed that the inability to take the physics
properly into account leads to the .numerical schemes mentioned above to
be strongly coupled to the grid on which they operate. Thus there 1s a
need to design grid independent numerical schemes. Raghurama Rao and
Dehspande [23] have developed a genuinely multidimensional upwind Boltz-
mann scheme. Following the recent terminology this method can also be
called as Multidirectional Upwind Boltzmann Scheme.
Consider the collisionless Boltzmann equation

af af.

ot oz (50)
Cousidering a 2-D flow, the central problem in developing a multidirectional
upwind scheme for the Euler Equations (via the moment method strategy)
is to develop a suitable discrete approximation to v, '—% + 02% on the quadri-
lateral mesh, a portion of which is shown in the sketch that follows.



The mesh point P is surrounded by eight mesh points. Particles arrive at P
from all dircetions and not just along coordinate directions x and y since the
molccular velocities vy, v vary from —oo to +2c. The problem then boils
down to obtain a finite difference approximation to @ - grad f for each v.
Keeping in mind that 7 - grad f = v, where s = coordipate along 7, we

ds?
can obtain the first order finite difference approximation as
O - Jp= e (51)
0Os As

where As = Distance between the points P and Q. We notice that on the
right hand side of equation (51) the difference fp — fo appears instead of
fo — [r because particles having velocity antiparallel to direction s send
iformation to P. A shght rearrangement of equation (31) yields

of An\ fp ~ fo fr = 1o
)— = ) — = n . 52
" 0s (l As) An T (52)
The next problem is to calculate fg from the data at the nodes 1,2,...,8. The

position of the donor point QQ depends on the velocities (v, v2) and could be
anvwhere on any of the eight segments 12,23,....81. Consider the segment 12.
Assuming linear variation between the nodes 1 and 2 the distribution func-

given all the details involved in interpolation, obtaining appropriate limits
of integration with respect to vy, v5. Of the two integrations they have been
able to perform one, while the other one has to be performed numerically.
Integrations with respect to velocities vy, v, appear in the formulation when
we pass from equation (31) to the Euler Equations via the moment method

16



strategy. As the resultant scheme takes into acconnt all possible directions
it s oaptly called as multidirectional upwind Boltzimmann scheme. They have
applied this scheme to the standard shock reflection problem and the re-
sults are shown in Fig.19 where the pressure contours from this scheme are
compared with those from the usual KFVS scheme. It is obvious that the
multidirectional scheme has much less smearing. Unfortunately, this mui-
tidirectional scheme is very expensive and further research is necessary to
improve it. Constructing a new multidirectional scheme using the thermal

velocity is an attractive idea.

5.4 Least Squares Weak Upwind Scheme

Presently development of Euler Solvers on unstructured meshes is mostly
limited to linite element and finite volume based methods. The use of un-
structured grid with finite difference formulation is still a challenging task.
Recently Deshpande, Mandal and Ghosh [24,25] have tackled- this problem
from a completely different point of view. At the heart of this formulation is
the least squares discrete approximation to the derivatives f; and f, of anv
function T which in the present case is the Maxwellian velocity distribution

(vy — ul)z (m — 111)2 /J

(53)

P _ _
f=1r QWRTEIP[

2RT 2RT 1,




Let us consider a part of the triangular mesh shown in the above fignre where
the node O is surrounded by nodes 1.2.3.... and let ..y, be the coordinates

of the node i. Introduce the notation
Afi=fi=/fAn=0-1,. Apo=y—u,
The Tayvlor expansion gives
Afi= fodr, + f,Ay 0 =1.2...0n (5-4)

Thus we have two unknowns f;, and f,, and n lincar equations. By mini-

mizing the square of the error

€ = Z (Af, - fIO;—XIl - f_!/nA.’/n)'z (55)
=1
we gel the least squares approximation
AP (Ar AN ~ (Az. Ay (Ap.A)) -
| Az I Ay IF — (31’
AV (A1 AS) - (Ar Ag)(Ar,Af) )
. | &z 12 &y [P = (AxiAy)”
wliere . .
| AxP=3"Azi, || Ay I’= 3 Ay
=1 =1
(Ar,Af) =S Az Afi, (Ay. Af) =) Ay, (58)
=1 =1

The formulae (56) and (57) are only first order accurate and the second order
accurate least squares approximations are obtained by replacing A f; in (36)
and (H7) by Af; defined by

. ! 1
A.[x = -—X’; - ;AfiAf.ri - SAIA—lfyx —}‘f:: = f:;: —j;'n —t\fyx = fya _erx b

An upwind scheme for the solution of the 2-D Boltzmann equation

0 d d
—f+vl—f+vo /

BT iz _azo (60)
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Cone_urs ‘ror .- L. = 1l witn arn interval .2

Pressure contours ifor shoox reflection problem at supersonic Mach
number { M_ =2.9, oblique shock angle=2G ) obtained wusing first

order time marchiny fin:ite difference KFVS scheme
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Fi. 9

Contours from 0,65 to 1.45 with an interval 0.025.

Pressure contours for supersonic flow ( M_ = 1.4 ) over a 4%
thick circular arc bump in a channel obtained using (a) first

order and (b) high resolution time marching finite volume

KFVS schemes
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Fig 2C

b) First order with rotation

c) Second order with rotation

Pressure contours for shock reflection problem
using Least Squares Upwind Method.
(contour level 0.9 to 4.1 with interval 0.2)



